\D-A095 727

JNCLASSIFIED

MARTIN MARIETTA AEROSPACE DENVER CO DENVER DIV F/6 972

TOTAL SYSTEM DESIGN METHODOLOGY.(U)

JAN 81 E C STANKE F30602-78 0250
RADC~TR=80~337

/

RADC-TR-80-337

Final Technical Report

January 1981 LEVEL :

TOTAL SYSTEM DESIGN METHODOLOGY

MARTIN MARIETTA AEROSPACE

EDWARD C. STANKE, II B_IC! 'lCE:
s MARQ 2 IOBID

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITEDI

ADAQ9S727

h

DOD FILE COPY.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

-

Cr O W

r"w‘ e ' "' ’ -"’

ghap-yy ~hh g

R T

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nationms.

RADC-TR-80-337 has been reviewed and is approved for publication.

APPROVED: /%% é@ (—/ﬁ JZ/

NATHAN B. CLARK, Capt, USAF
Project Engineer

APPROVED:

JOH
h

. RCINIAK, Colonel, USAF
, Information Sciences Division

Ay
FOR THE COMMANDER: u/ﬂ(’%/: SVl N

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mail-
ing list, or if the addressee is no longer employed by your organizatiom,
please notify RADC (ISCA), Griffiss AFB NY 13441, This will assist us in
maintaining a current mailing list.

Do not return this copy. Retain or destroy.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE ‘When Deta Enteted)

/! REPORT DOCUMENTATION PAGE AP INSTRUCTIONS @ v
. B'E_P.?‘!’T N}JMSEH . 72. GOVT ACCESSION NO.| 3 RECIPIENT'S CATALDG NUMBER
/e [mucj{r’ R-80-337 \AD-poge 72 74
4 TITLE 7and Subutle) .l % __TYPE OF REPOAT & RERIQD CQVERED
| _” | Final ?@chnical Repért, .

TOTAL SYSTEM DESIGN %ETHODOLOGYO 23 Aug 78~-31 Aug 80
[8: PERPOAMING OG. REPORT NUMSER
N/A

7. AUTHOR(S) . 8. CONTRACT OCR GRANT NUMBER(s)

-

Edward C., Stanke, II F39602-78-C-0250

10. PROGRAM ELEMENT PROJECT, TASK
9. PER.FORMING E')P.GANIZATION NAME AND ADORESS L ARESH :ORLK :mN'r NUMBERS
Martin Marietta Aerospace (Denver Division) 62702F oy
- P ’ /
0 Box 17 I e P
PO Box 179 ¢, [55841704 : -
Denver CO 80201 - b
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPQORT QATE
Rome Air Development Center (ISCA) ‘ ' Jan g 81 / N
R N , 3. NUMBER OF PAGES -
Griffiss AFB NY 13441 i 2] e /
-7 !
T4 MONITORING AGENCY NAME & ADDRESS(If dilferent from Controlling Olfice) 15. SECURITY CL ASS. (of this r'poﬁf T A
{INCLASSIFIED
Same
15a. DECLASSIFICATION, DOWNGRADING
SCHEDULE
N/A

16. DISTRIBUTION STATEMENT (of thrs Report)

Approved for public release; distribution unlimited

17. OISTRIBUTION STATEMENT /of the sbatract entered :n Block 20, if different [rom Report)

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: Nathan B. Clark, Capt, USAF (ISCA)

19. XEBY wORDS 7Continue on reverse side !l necessary and (dentify dy block number)
System Design

Methodology
. . Requirements Analysis
| \\\ Functional Decomposition

0. ABSTRACT (Continue on reverse side if necessary and identily by block number)

This report describes the Total Systems Design Methodology, including the
philosophy, automated and manual tools and procedures which support it. It
also documents the applications of that methodology to the Navstar Global
Positioning System Operational Control Segment system definition and
conclusions based on that application.

v

DD , jg:",, 1473 €0iTiON OF 1 NOV 63 1S OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dets Entered)

IR PR,

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(Whan Daca Entered;

J

!

UNCLASSIFIED

SECURITY CLASSIFICATION OF Tur PAGE'When Date Entered) 4

INTRODUCTION

TABLE OF CONTENTS

1.0 INTRODUCTION ..v.ivvvecnesn Ceeereaas i eesanes Ceereens
2.0 TSD OVERVIEW ...vcveeevonancen ceeae teaeesene N
2.1 TSD Conceptual Foundation........eecoeenv. PN ceeans
2,2 TSD Approachvitiiiiiinecrennns ceeresnas N
3.0 TSD TOOLS DESCRIPTION ..ieveeeercocons crsesee s s s
3.1 Introduction ..o ieiivinenenencesesssonssnnns -
3.2 Multi-Level Expression Design System (MED Sys) .o
3.2.1 MEDL-R ..iceveecnnnnns cersee ser e e sassasraaer e .
3.2.2 MEDL=D ..vicvvennnns S e et s artssesssesesssrsss e naen .
3.2.3 MEDL-P, MEDL-X ..vcecevsevccnsese ceesee tresecansves
3.2.4 GAPS . ivierenerasccnsoncnes ceeersenens . ceeseae
3.3 Comprehensive Computer Network Modeling (CCNM)
3.4 Non-Automated Tools/Procedureseveeeeeeaccenns
3.4.1 Data Flow Diagrams .u.ueveieeiersnceronansscnsessass
3.4.2 N2 Charts ettt eree e . Cetereseseaasansans
3.5 Other TocolS....... Ceseeeaans Crsecrrerentenaran ceanen
4.0 TSD USAGE. e cveeeseesenns Cerer e Ceseseassasssesrsases
4.1 Introductionevevererennsns et ercesesarrasesens
4.2 PropoSal ..vieeeseesosssraracencoscsccacassssosnsonnas
4.3 Functional Baseline........ceeveveceveessooccns veseae
4.4 Allocated Baseline...ivevvrerereaesesanasnns ceeraseaas
5.0 GPS USE OF TSD st vvevvnoneesonsssnsoonnssannne esenes
5.1 Introduction te ettt . Cetseserenenne N
5.2 Approach...vveveriereerennnaens cestesesasessaann cerenan
5.3 ReSULES. . iititere iyt nneirnnenssasaconsnssesannns
5.4 Conclusions cessese RPN e teersessasean
6.0 CONCLUSIONS S, . ceoene .
e
Accession For
RTIS G~ &I §
DTIC T°B
Unannoinced O
Justification . . _
By . ._.
Distrl hitt L on/
Avail % lity Codes
[...oil and/or
Dist ' Lperial
iit

Il
VLUV UVEDDSEDWLWLNNNDNRNNDNNONERFREBESITNDND - D
SNubpHEHROUNMNNDNNOVDENYNOUVENHDWOO

[

Y

oy

EVALUATION

)

This effort has advanced the state of the art in computer system

design methodologies by initiating the implementation of a TSD
methodology originally developed by Martin Marietta in their
IR&D proyram. This effort also provides a case study analysis

as a method of demonstrating current capabilities and areas for

further implementation.

| Tt Sl

NATHAN B. CLARK, Capt, USAF
Project Engineer

S am s ik & . Di

1.0 Technical Problem

The Total System Design (TSD) Methodology contract had as its goal the
documentation of Martin Marietta's approach to embedded computer system design

) and the documentation of the application of that approach to a real world

program. The problem addressed by TSD is the wide variability of projects
involving computers in terms of system success. The intent of the methodology
is to impose a rational approach, supported by automated and manual tools and
procedures, on the process of defining the computer portion of systems. The
computer portion includes the basic hardware, the software driving the hard-

ware and the people who interact with the hardware and software.

2.0 General Methodology

The methodology used in the contract stems from the two purposes of.the
contract. First is the documentation of the TSD methodologyv, including phil--
osophy and supporting tools, both automated and manual. The second is the
documentation of the results from applying the TSD methodology to the Navstar
GPS Operational Control Segment. The contract under which the GPS work was *
defined was a Stage 1 contract whose output was A and B level specifications
of the Operational Control Segment of the GPS system. This segment represents

a command and control system with aspects of real time, distributed processing.

3.0 Technical Results

The application of the TSD methodology to the Navstar GPS project provided
several significant conclusions:

1. The requirements analysis process must be aided by some sort of

automated tool. The benefits received will more than compensate

vii

for the initial front end costs.
2. The use of simulation for verification purposes is absolutely

necessary for the architecture definition phase.

' 3. The step of going from a complete understanding of the functions %
of the system to the actual system implementation components is l
one serious gap in the methodology. ?

4. The use of TSD requires an understanding of the methodology and
belief of the people using it in its ability to aid the process.
The overall assessment of the methodology is that it provides a useful
frame of reference and a viable approach which aids system design, but the 1

methodology is incomplete and more research needs to be done in the area of

system design based on functional decomposition.

viii

4
13
;
H

1.0 INTRODUCTION

This report documents one view of the design process for computer svs-
tems and the application of that process to a real world problem. The use of
the word system in this report refers tc the computer portion of a larger
system, which may in general be more encompassing than just the computer.

For example, the sensors in a surveillance svstem are veryv much a part of the
system itself but are not included in the definition of system within this
report.

The intent ¢f the Total System Design (TSD) Methodology is to impose a
rational approach to defining what the computer portion of a system should be,
including the underlying hardware, the software which drives the hardware
and the people who interact with the hardware and software. As currently
implemented, the methodology does provide a framework for that rational
approach. There are a number of tools and procedures supporting the method-
ology. However, there are gaps and the interfaces between the various cools
are not always well de%ined. Work at Martin Marietta in the area of method-
ology and tools is on-going. This work supports the filling of the perceived
gaps and the development of a consolidated support system for system develop-
ment .

This report detalls the current philosophy and implementation of the
methodology. Section 2.0 gives an overview of TSD by providing a conceptual
foundation and approach. Section 3.0 describes some of the tools currently
supporting TSD and Section 4.0 gives a scenario of TSD use in a system design.
Section 5.0 is the description of TSD application to a real world problem,
the Global Positioning System (GPS). Finally, Section 6.0 describes where

the methodology is now and gives a critique of the methodology based on

actue’ use,

2.0 TSD OVERVIEW

2.1 TSD Conceptual Foundation

The category c¢f command, control and communications (CB) svstems encom-
passes a broad spectrum of military and scientific worlds. Examples of C3
systems applications include military tactical and strategic command centers,
military intelligence networks, process control systems, satellite operations
centers and launch control facilities. 1In the past, some C3 systems have per-
formed successfully and others have failed miserably. The wide disparity in
the results of the system development, together with the extremely high cost
of failure, have created an urgent need to reduce or eliminate faulty system
design for future systems.

Initial efforts in trying to cope with increasing system complexity
emerged from researchers in the software arena and resulted in concepts such
as structured programming and top-down design. The "Software First Concept"
has emerged relatively recently in response to the continuing decrease in
hardware prices and recognition of the fact that software costs can be, and
very often are, the overriding factor in total C3 system cost. ''Software
First" implies that the system designer can decide how to most effectively
implement the system's functional requirements and then select the appropriate
hardware, as opposed to having the software being categorically driven as a
result of premature specification of hardware.

The system development process stands to benefit from this software
activity. Top-down design concepts, for example, are just as applicable to
the process of defining the hardware, software and the action of people, ref-
erred to collectively as the system, as they are to software design. Likewise,
the tools developed primarily for software (e.g., requirements tools) have a

wider applicability.

s S

! Since many of these tools are automated, the possibility arises of dev-
' eloping a computer-aided design system to aid the system design process.
Computer-aided svstem design is appealing because conceptually state-of-the-
art svstem design methods could be maintained in the computer system and
accessed interactively to help a system designer in his effort to design a
new svstem or to modifv an existing system. Svstem design could conceivably J
become more of a discipline and less of a subjective art. The observation
can be made that C3 svstems in themselves are extremely varied in complexirty

and function and that an automated method of designing such systems would of

necessity be perhaps an order of magnitude more complex than potential target ;
svstems. This may indeed prove to be the case. Nevertheless, such automated
methods are in themselves svstems, and as such can be implemented by the very 4

methodolegy they are trving to perpetuate.

Martin Marietta is developing a "Computer System Development llethodologv,"
a lotal Svstem Design (1SD) Methodology. TSD Methodologv is a set of skills,
tools, techniques and facilities whose ultimate purpose is to provide for an
orderly, svstematic approach to svstem design including the key concepts of
baselining and validation at important points in the design process.

The foundation for anv svstem desiegn is a set of requirements which
define what the svstem is to do. The set of requirements for the TSD method-
ology svstem can be overviewed as follows:

1. Must be receptive to system requirements, both functional and non-

functional. Non-functional system requirements include software maintain-

ability, svstem life-cvcle costs and training. The functional requirements

are stated as machine processable problem statements; more about this topic

| later.

2. Must be receptive to svstem architecture, where ''system architecture’

refers to the mixture of hardware, software and human functions as they inter-
act in the functional system.

3. Must be able to compare various system designs; this requirement is

obvious.

4. Must be capable of interactive design, including feedback regarding

the effect of system architecture changes on the overall performance of the
system.

5. Must be receptive to system requirements changes. System require-

ments changes must be anticipated in any major system, as a general rule.
Some classic causes of system requirements changes include poor planning,
incomplete or inconsistent requirements, lack of visibility and errors not
detected early in the system design. In addition to these glaring causes of
changes, legitimate functional changes should be anticipated due to improved
technology, system expansion and new requirements.

6. Must be capable of supporting system models. The methodology includes

the development and refinement of models of the target system for analysis and
validation purposes. The first model produced, the system functional model,
which is a model of what the system does and not how it does it and which is
hence implementation independent, requires support. The more detailed models,
including simulations and emulations of rhe target system also require support.
The processes involved in creating, analyzing and modifying the system
baselines form the system development methodology. There are three basic

phases in system development. These phases are interdependent but typical

system development follows the basic sequence shown in Figure 1.

I

' Analysis
Phase

Synthesis implementation
Phase Phase

T

Figure 1 System Development Phases

It is important to note that the three phases described do not include
the whole system life cycle, particularly the operations and maintenance of
the system after delivery. The total system development methodology, by its
very nature, does not include specific operation and maintenance but should,

through its effects on the design, produce systems which are more easily

operated, maintained and modified.
There are a number of tools, concepts and methods supporting the imple-
mentaticn phase. For software, for example, these include all the currently

emerging software engineering concepts including top-down desigﬁ, implementa-

i

tion and testing, structured coding, program management concepts such as
chief programmer teams, structured walkthroughs and support systems such as
program support libraries, program description languages and high order lan-
guages. For hardware, there are the traditional tools of simulation proto-
typing and breadboards. The legacy and capabilities represented by these
tools, methods and concepts indicate that if the preliminary work done in the
analysis and synthesis phase is viable, the implementation phase, although
still a major part of the development, is more reasonably accomplished. The
TSD methodology therefore concentrates on the initial two phases u¢f the svs-

tem development process, analysis and synthesis. If the initial, top-level

system design is based on rational, woll-defined steps, there is a strong
probability that the implementation will proceed much more smoothly and the
final resultant system will stand a much better chance of not onlv solving a
problem but of solving the right problem, the one the customer or user nceds
solved.

The first two phases of system development are intimately involved with
the top-level svstem requirements. These requirements fall into two general
categories: functional requirements, which tell what the system is to do,
and performance requirements, which tell within what constraints the svstem
must do it. There is a third class, which could be called general, relating
to overall constraints such as power maximums, size constraints, etc. This
class relates to neither function nor performance, although it has an effect
on both and must be included at some point into the process.

The first phase of svstem development, assuming conceptual and feasibil-
ity studies have demonstrated that solution to the problem is possible and
practical, is the analysis phase. During this phase, the primaryv emphasis is
on getting a valid appreciation of the problem being solved. This apprecia-
tion includes an understanding of the various pieces necessary from a func-
tional point of view. The major result of this phase is a functional model
of the system, showing how the various components interact and the interfaces
between them.

The analysis phase deals with the functional requirements for the syster.
Performance or general constraints are not included because they relate to
how the system accomplishes its tasks, not to what the svstem does. The par-
titioning of the what and the how is fundamental to the system development

process. Until the functions that the svstem must perform are well understood,

it is premature to even consider the resources necessary fer the system. It
is here that many system developments fall down. One of the primary causes of
problems is the premature selection of components (computer hardware) in an
etfort to "show progress" on the system. The more practical approach of let-
ting the functions to be performed dictate the svstem resources requires a
thorough understanding of the functions before deciding what those resources
are to be.

The second phase, synthesis, uses the functional model of the system dev-
eloped in the analysis phase as a baseline. During this phase, the performance
requirements (constraints), general requirements and current state-of-the-art
are added into the next baseline of the system. This phase includes trade-off
studies, simulation/emulation and whatever other analytical or experimental
techniques will aid in determining the proper hardware, software and human
resources to best fulfill the functional requirements within the performance
and other constraints.

2.2 TSD Approach

Figure 2 depicts Martin Marietta's TSD approach. Figure 2 shows the
varioug steps which comprise the process, along with the various documents
which are produced during the development. There are several significant
items in this figure. First, the feedback loops are not shown. However, the
realities of system development dictate that the capability to reiterate some
part of the process is absolutely necessary. Second, the figure does put the
stages of system design into the perspective of the reviews specified by
MIL~-STD-1521A.

In terms of the analysis and synthesis phases described pPreviously,

everything on the chart up to the System requirements review (SRR) can be

PROOUCT
BASELINE

A ¥

INTEGRATION PHASE
SYSTEM VERIFICATION SYSTCM VALIDATION

A%

OPERATIONS PHASE

Combine Wission

System Simulation
=

Test

Configuration
Audit

L

¢ Functiona! Inventory

o Requirement Verification C1/CS VS B1/85
o Through Put Verification

o Positional/System Training

o Evel RPTS

o Tnining

o A Spec Verification

}

MWW P SW /MM SYSTEMS DESIGN PROCESS

‘ MWAC Recommended Document

DEVELOPMENT mssI BUILOICODE AWD TEST | SYSTEM VERIFICATION
A% T4
(o \ﬂll
\N
ot Subers. Y
(T8 integ
FAD AP & Tet
Qual
Test Prec AT Data P Test Regt Subsystem
!ntegrAion
Ang System
by Log Level Test
Test Qe
eFermal Config Controi Finat Users Manual
¢+ Prooess Planning
& Tool Design¥ad
(
Nodule w sub
. Functionst |
Code Unif Test Tet : ::snul
e Through
® pasitional'$y
Ustings o Ewl RPIs
o Training
Tost Proc ‘ oA Spec Vorl
T
Ol
Lavel
Tests
© Farmat Confiq Cortrol o Mning And
® Table Top Sizing Duta
Weik Throughs
o 'nformal Test Resufts \oitlal
postiondl b
System
Training

Config Rem
Drweiop Spec (CD)

{
{
|
¢
!
I

{
i
. ‘!ﬂ"kqs‘%,‘.:’h.«;w' “ﬁ—-ll N
- - B . _i

OEVELOPMENT PHASE

INET L. PRELIMINARY DESICN 1 OETAIL DESICN T
: c
S ys tem Sutsystem
,.__J Hardnire Hardmare il
Analysis Design Design
Traoe Study HAgY Sutsystem
Reporty Design Criteria
o Hardware Systam Hud¥iromare
Partitioning Equipment
© Math Mode! Procuremer’s Specs :
Refinement !
o Ik Party oJit Bets
SystemiSudsys I oMate A By
Definihion)
Prototypes
And Dsion ’ Firmuare ';
L Hirmware]
Usdate System Anatysis o '
Owscription {
And Aliocation Dor Proc Spec i
eline
Cantig item
Deveip Spec ‘81 5
S system ubsystes w
olata
B&eline dctionary —— Software Sottware Detaried
Comoyter Progran ' Anatysis Des gn owsign
Deveicp. Spec. 85 _ — __J .
Trate Study Program w3 Baseline
Drant Reports Manuat Computer Program
Conflg ftem o are Proguct Spec 1C5H !
Product Sosc 1CL ¢ 85 functional funchanal . i
Decomoas.tion Olag any Outaited Graphics i
® Schware System ~ - mme\J
Partitioning o Desi
ign Walt Troughs Tist Plans
® Dyt Base Analyyis oMate Or Buy And Procedure.
© Pratotyping
e
Perennngl Proced
p— Subsystem Det e
Design)
User Woruai Training Plan
mm-‘-n
‘m Anal Pusitionai Ha ey
® Sconevio Watt Thry
ivm
Design
Updste
Update Analysis
uip Orawing
Amefing Config ttem
Product Spe. C1

® Qactromagrenic Compatats ity
o Sacunty

o Mgt Propechies

o M5k Angtyyis

®LLCc

insl 1COM

¢ Umnror menty
® Survivate ity vy inerate ity

1A

—_——

oTiming/Si1

o Prouctnhity

el nch & Wision Planning

o Command And Megsurement st

FUNCTIOMAL
050 I

OEF INITION PHASE

CONCEPTUAL PHASE

REQUIREMENTS DF Init1y

\w

Mission

[Rt &

r

Adtivities

Mission
Reqs
Analysis

] 2 Propare & Revise
" Spec

nctional Analysis
Trade Studies
DPS Concept i
‘s Anal & Concepts ®Fact Finding
Plaas (Qual. SIMP Bo) o Reg't Walk Thry
And Deltas

ign Can cent
t/Best & Final
gng & Scheduie

0PS Concept

o Timeline
sMission User Scenarics
OFR & Mission Rules

Program
Pienming

1

System
Def:mtion

10esign Baseling

] Normally Prpared
% Customer

~—
o Derived Requireme~s
o {F Compienty
o LCCMisk Assessme~S
o Preliminary Herw -4l
Definition
o ¥ Anatysis
o |rterrelations M
* Reaurce Buxe g
® Functional Parttor g
o System Design
walk Throug™s
o |nterface Wort.ng Grougs

Preliminary System
Description And

Allocation
Doc_

Preliminary
Config item
Develog Spec (81

Preliminary
Compter Program
Deveiop Spec 185

Program
Apphication

Lo

Pro Propmsal
Activity
o GIBWC
© NBAE
o Miting Anal
Customer
Program
Definition
o Misslon/System
Cancapt Req'ss
o Sow

Figure 2.

© Review Re'ated Doc.

@ User/Customer Coord
Priorities/Goals

® Technology Roadmap

© Systam Lagacy

¢ Constraints/Restrichors *. ~ -x.

® Propased Systems Ops Sce-ar <

o System Modeling

© Scheduie/Cast Anglys s

* Req's Traceanility

o Testability

* 0P Modes Trades

® Roles And Respons bt es

© Mamure Of Efectiveress

Aclivities

-

Pragram ;

System "esien Process

Mission

Reg's &
Analysis

Customer
Procurement
Procesy
REPISOW _

Projsat

o Functional Analysis
oTrade Studes

®0PS Concupt

oReq'ts Anai & Concepts
®Plans Qual. SIMP Bo
o Desiyn Concopt
o0rats/Best & Final
®Pricing & Schedule

categorized as analysis. Svnthesis consists of all the steps from the system
requirements review to the critical design review (CDR). The balance of the

4 figure to the operations phase represents the implementation phase.

The Martin Marietta approach to actually performing the steps of the

=

svstem design process depends on a number of tools and procedures, both

b manual and automated. The current implementation of the methodology is not
complete and does not provide the end-to-end capability envisioned as the
final result. However, the concepts and philosophy which drive the method-
ology are in place and provide a good backdrop for tool use, evaluation and
enhancement. Fverv effort is made to use currently available tools wherever
pussible to avoid "reinventing the wheel." The discussion which follows will
describe the tools which are currently part of the methodology, how they fit
in and what the gaps are. It will also include a discussion of some manual

. approaches which are prime candidates for automation to fill those gaps.

.-IIIlill.III-IiIIIIIIl'III-IlIIIIIIIIIlilll-IIﬂll.ih..liu.nu....uﬁun-nn PRGN

3.0 TSD TOOLS DESCRIPTION

3.1 Intiulu-t¥on

During the analysis phase of system design, cue emphasis is on the require-
ments; first, the functional requirements for developing an understanding of
the system and the problem it is to solve and, second, the perfor~ .ce require-
ments to bound the capabilities necessary on a function-by-function basis.
Since one of the key premises of TSD is tane absolute necessity for requirements
traceability and since the methodology is based on developing requirements
driven design, it became clear very early that some kind of requirement data
base manipulation capability is verv necessary. This is due to the often
large number of requirements (large programs typically have in the 1000's)
and the impossibility of doing tracking, categorization and manipulation
manually. In addition, heavy emphasis is placed on requirements definitién
because of the historical evidence that vague or insufficient requirements
often lead to disproportionately high system cost or subsequent design def-
iciencies.

The second major part of the analysis phase is the functional analysis.
Actions during this phase include what 1is often termed functional decomposi-
tion or the top-down partitioning of the system functions into more readily
understandable entities. It would be highly useful to have a tool which aids
this functional analysis.

The final part of the analysis process 1is called requirements allocation
in Figure 2. Requirements allocation refers to the task of deciding the
projected implementation of each functional requirement. This must be done
with a full appreciation of the performance requirements of each function and

within the context of project specific guidelines for allocection. The key

10

technical {ssue in this process 1= deterninine the vuidelines tor
allocation. Fivure 3 snows an example ¢ such guidelines for one program.
" |
‘ oA A
Specihieg 1 | "ot
¥ -
S o5 h ,// Does \\
/ Harg. are [§o!!.'.arc
i Exist & Vo mf mnare
: Is‘ |‘z Exist &
, 1t
- ~?
Joes
Are ?;iiTAC TRI-TAC Does TRI-TAC
Aiter~atives Use Human “ormally Use | N0 Normaily Use
Feasible & Hardv.are To Software Firmaare Aupcate 7o
Lesiraple? fo PEUOT Perform To Pertorn ("1 Humar
Function Function ? Function? !
Allocate Te
r’ Harovare
s s Is s
Req Function Function Function Function 4 | Pertorm Allocate To
Assigned By “or mally Normally Nor mially Y| Tradeoff ~»| Software
REP Or Assigned To Assigned To Assigned To No | studies Firmuare
Specs? Hyman? Hardware? Software?

Figure 3 Example Reguirement Allccation Guidehines

Figure 3.

Example Requirement Allocation Guidelines

From Figure 3, it is obvious that requirement allocation is a manual

process.

validation shows up deficiencies.

It is a prime candidate for iteration, however, when subsequent

The key part 1s the determination of

guidelines and the tradeoff studies which define the allocations to be made.

There do not exist any tools to aid this task.

For the synthesis phase, major emphasis is on the development of a

validated system baseline, the definition of the major hardware, software

and people components, and the interactions/interfaces between them.

11

The

nrocess of developing candidate solutions to the functions has two primary
approaches. The first is a propose/dispose action where alternative candi-
dates are postulated and then evaluated to attempt to derive a best fit solu-
tion. The second is a form of bottom-up design which uses the requirements
allocation and proposes compositions of functions to dictate the candidate
solutions. These again must be evaluated in terms of how well they solve

the problem. Regardless of the approach, the development of candidate sys-
tems to solve the problem is a very creative process, depending on the
experience, knowledge and background of the svstem designer. There is
currently no way to accomplish this task by automated tools. However, the
second half of the task, the evaluation or validation, virtually requires a
tool or tools to aid the designer. TIn the final analvsis, there are really
only two ways to validate a candidate system design. The first is the proto-
type method often used in hardware design. The idea behind this is to
actually build one to see if it does what is desired. For systems, this is
clearly impractical. The second is the simulation method. This consists of
the use of a simulation model of the proposed system to answer the relevant
questions.

Simulations, by their very nature, are very flexible. They m;; be dev-
eloped in a wide range of levels c¢f detail. As the answers required become
more specific, the attendant simulation may become more precise with respect
to its representation of the system being studied. When the simulation
becomes unwieldly, there is the companion technology of emulation to aid
the evaluation process. Thus, the key automated tool for the svnthesis phase

1s simulation/emulation for evaluation and validation of candidate system

solutions.

12

T

¥ a

With these actions and the applicable support requirements in mind, this

section will cover the tools and methods currently in use supporting TSD.

3.2 Multi-Level bxpression Desipn System (MED()
The Multi-level Expression Design Svstem (MEDSys) is a group of inter-
related, automated toouls designed to assist an analvst bv keeping track of a
variety of things as he progresses through the design. Having been conceived
and developed bv software analysts, MEDSys currentlv retains a strong sof tware
flavor in its documentation (such as the statement in the MEDL-R users guide

t

which savs that MEDSys is "...a systematic method of managing and controlling
the software development cycle'). However, the currentlv existing parts of
MEDSys have been found to be equally useful for system development through 3
actual use on projects. This result is to be expected, since the typical
software development cycle is not fundamentallv different from the svystem
devz2lopment cycle.

The multi-level expression design system is composed of the following

components:

o MEDL-R (Requirements)

o MEDL-X (Document Generation)
o MEDL-D (Design)

o MEDL-P (Procedure/Behavior)

There was specific emprasis in the development of the philosophy of
MEDSyq on separating the tool that supports requirements (MEDL-R) from the

tool that supports design (MEDL-D). The reason for this emphasis is the per-

ception of the design process which divides it into the analvsis and svnthesis

phases discussed earlier. The analvsis phase deals with the svstem in such a wayv

that design issues are undesirable and premature. It was found that other require-

13

P o — ey e

nents tools (L‘..L',. PSE/PSA) tended o caconra e the aser U oo lude Jde v
concepts in the requir-ments phasce. thus, 2 major erffort was put iato making
a clear distinction hetveen requirenent- and Jesian and o bulldise toolswoich
will not allow the user o inadvertently cross the boundars between the two,
3.2.1 MEDL-R
In terms ot implementation, MEDL-R i« fully {mplemented, has bheen in

operational use ana s relativel miture. fhe first version of MEDL-D Las
been implemented but the use has Deen mostly test cases to dates JEDI=X and
MEDL-P are currently in the desion stacve., Based on tivls status, the following
discussion will concentrate on MEDi-R. MEDL-R pnrovides the basic requirements
tool which is so necessary in the analvsis phase and which provides for
traceability in the later phases of svstem desizn,

The requirements specification phase of the design process requires the

which must

be pertormed in order to meet those needs.
An impcrtant cutput of the recuirements phase siould bo a detailed, 3
clearlv written, functional description of the svster and the manney in which

the user will interface with that . Al rhoust hudect =, roscurces and

schedules are also specitied durine thi- phase, it is within the Tunctional
specification that most of the errors and difficulties arcv encountered.

[t should come then, as no surprisc, that the ditfference detweell SUCCESS
and failure on a project mav often tic in the clarity, consisteney and complete-

Ness with which the user's needs ave Seen stated in the reguirements docunment.

Inadequate requivenents anag P guite olten manifests itscit in four

o A top=down desion i inpessiile,

o Adequate testing is divtficult or impossibic,
] 0 The user is locked out of the development process.
q
o 0 Project management is not in control.

A well-written requirements document will (or should):

o Be a well-thought-out, complete and non-conflicting record

of the user's needs.

o State specifically the performance of the completed product

and the methods which will be used to produce it,

o Describe the common objectives of the participants.

The MEDL-R processor has been developed and implemente@ in order to assist
the requirements analyst in the nroduction of documents of consistently high
quality and reliabilitv.

As the motive behind the design and development of a system, it is impera-
tive that requirements be accurately recorded in a malleable data base. Due
to the evolutionary nature of the software development cycle, the MEDL-R
processor emplovs a (malleable) data base that readily lends itself to the
changes which are an inevitable bv-product of an iterative process.

A more complex problem is that of providing a "mapping" scheme which
allows traceability from requirements to modules. The MEDL-R processor
addresses this problem via a requirements '"taxonomy'" through which an attempt

g is made to identify and classify pertinent characteristics.

MEDL-R addresses the problems of incompleteness and ambiguitv by requir-
ing the user to impose successively greater degrees of formalism and clarity
upon the problem statement. MEDL~-R then, by asking the user to respond to a
few '"rigorous' questions and by allowing the user to respond to other (less

rigorous) questions in a relatively "free-form'" manner, gradually leads the

15

user into imposing discipline upon th.o desipn orocess,

The real-world model upon which MEDL-R is bused is reallv rather simple.
Requirements exist and thus may be categorized. ‘inis catvrorization .-
accomplished via threc (primary) aspects:

o The nature of a requirement,

o TIts motivation, and

o Its general subject matter.

The nature aspect identifies the most general characteristic(s) of a

requirement in terms of how it came about, or how it impacts the system to b

T

desigred.

Motivation allows the user to (simply) state the reason(s) why a yiven
requirement is under consideration.

o The subject aspect allows the user to specifyv (and thus highlipht)
the key words of the requirement in the jarpon of the target svystem.

One of the more important objectives of MEDL-R is that it facilitate
design as a process and aid in the transition from requirements-definition to
a top-level design. This facet is accommodated via a mechanism which is nsod
to describe the resolution of a requirement. The resolution of a requivcucnt
is not only a means of further categorization, it carries with it a stronger
design connotation and allows a clearer expression of an abstract (as vot)
concept. It is a means of identifying design components which will be roduced
to:

o A function

o A data entity, or

o A system resource.

As may be seen, MEDL-R rc¢lies heavily upon the use of key words to
simplify and clarify the reproesentation of requirements. Each MEDL-R key word
provides an aspect of characterization or a criterion subset that is associated
with a given requirement and implicitly relates common requirements. Thus,
all requirements that are of nature procedural would be (implicitly) related.

MEDL-R provides the user with a wide variety of requirement interrelation-
ships which may be used to produce various reports. A requirement may be
"decomposed" into logical sections as shown below:

Identification and
Characteristics
Tracing

Resolution

The identification and characteristics section provides each requirement

with a unique number (ID) and allows the user to provide descriptive (and
characterizing) information about that requirement.

The tracing section provides the user with the ability to trace the
history of a requirement in terms of succession and the decomposition of a
complex requirement into smaller, clearer components.

The resolution section contains statements that achieve the "mapping"
from the MEDL-R to MEDL-D data base.

MEDL-R is thus the initial software tool of the TSD Methodology. MEDL-R
responds to the critical objective of requirements specification and assess-
ment. Specification 1s enabled by a unique high order language whose elements
are processed and retained in a relational data base. Assessment techniques

access this data base and produce information about the requirements statement.

The MEDL-R system is intended for use throughout a svstem development

life cyelc. tt can be used to capture initial requirements, it supports
detaile!d requirements and iterative refinement of constraints, and it supports
management control and traceability functions. tor high level design, it can
be used to help develop the overall design structure. Fven during later

development phases when detailed design is underwav, the MEDL-R scheme is
useful for relating requirements to components and checking interfaces.

The retention of requirements in a malleable data base structure is a
kev factor of this approach. Not only can all requirement interrelationships
and dependencies be retained, but all versions, updates, supercessions and
obsolete items can be "archived,'" activated, processed, summarized or analvzed
using the features and commands of the MEDL-R support software.

This package is an interactive tool built and used in the environment
of a software engineering facility. As such, it is accessed through a terminal
bv a cognizant requirements analyst, systems designer or manager. Initial
creation of the fundamental requirements data base is onlv a verv small part
of the requirements definition and assessment task. It is the subsequent
refinement, revision, expansion and accommodation of new and changing require-
ments that has been so burdensome in the past. MEDL-R attacks this problem
along with providing evaluation techniques which produce analyst feedback for
assessing the impacts brought on by the variable nature of a requirements set,

The MEDL-R software system is composed of several subsystems as shown in
Figure 5. The interface package handles general system access and user inter-
action through a series of directives which determines the subsequent tasks
to be done. The six major subsystems of MEDL-R are:

o CREATE ~ The Create process is used to generate the requirements

source file through a "template' generation process in which the

18

user fills in a blank area in a template. Figure 4 shows the
MEDL-R statement list. tThe file resulting from the Create

process is passed to the Language Processor for creating the

actual requirements data base. i
REOUIREMENT SUBJECT
DESCRIPTION EXPLANATION
NATURE STATUS
CONSTRAINT REPLACES
SUBSYSTEM REPLACED-BY
SCOPE DERIVES
{ VERSION DERIVED-FROM
SOURCE ORIGINATOR FUNCTION~-RESOLUTION
RESULTING-FROM DATA~RESOLUTION
RESPONSIBILITY RESOURCE-RESOLUTION

Figure 4. MEDL-R Statement List Prompts

o UPDATE - Update allows the operator to update the existing
system. Update operations include changing any user entered
fields of an existing requirement, changing a requirement name
or system name, and adding all new requirements to the existing
system. The file resulting from the update process is passed
to the Language Processor for creating the actual requirements
data base.

o TRANSLATE - The Translator takes a file from the Create or Update
process and enters a totally automatic data base build or update

process.

24N)INIIS WIISAS asemyos y-103IW ¢ aunbi4

30e449)u]
1950

Jajaadaau]
aur

pUEW W)
117

yojeos

(Sdv9)
m__yt buyssadoly Oy
waojsuedy 0 sishjeuy 1oplo Do)
ydes9 > W
r
— -»| Jazheuy
— faand
aseg ejeq
syuawankay —»| ajejsues)
- abenbuen
VX
9l
aepdn ajepdn
ynesos
i
3UNOS | e 81eaJd)

20

3.2.2

OUERY - The primary purpose of the (Query subsystem is to provide

the MEDL-R user with a means of extracting from a MEDL-R data
base some subset of the information contained. Through this
facilitv, the user can form clusters, eliminating the need to
sort through an entire requirements statement to find those
requirements that are of interest to a particular user.
ANALYZER - The Analyzer subsystem allows the user to list
requirements that are in the data base, either singly or the
entire requirements expression; to summarize the information
in the data base in a tabular format; to build the Formatted
Requirements Statement; and to obtain various measurements of
what the requirements expression contains.

METRIC - The Metric subsystem also provides analytic measures
of a data base, but differs from the Analyzer subsystem in
that the Metric subsystem executes as a two-step process the
Extract transformation routines and the Graph Analysis Proc-
essing (GAPS) routines. EXTRACT converts selected require-
ments data base information into a tree structure of graph
nodes and links, which becomes the basis for subsequent
analysis. The GAPS package is explained further in another
section.

MEDL-D

MEDL-D is part of the MEDsys and is intended to be used for

describing systems design in conjunction with a preceding requirements

level (MEDL-R). However, it can be used independently of any of the other

MED

Sys

levels.

% PN “AA i, i - ot 7

The link from MEDL-D to MEDL-R occurs through the use of common subsvs-

p tem, function and data names. MEDL-D contains statements that trace a design

v

o component back to the requirement in MEDL-R from which the design was gencrated.
i A "complete' requirement in MEDL-R (i.e., one whose resolution is specified

b

because of the amount of detail) provides a link to the design phase (and
MEDL-D) because resolution occurs in the following categories:
o Function resolution - do something.
o Data resolution - use something.
i o Resource resolution - occupy something.

Design is recognized as an iterative process of imparting successively
greater degrees of procedure or behavior on a structure base. The structure
is evolved from the requirements during the initial design activity. MEDL-D
is primarily oriented to capturing system structure while secondarilv oriented
to providing the basics of proccedure.

} The two categories of components in MEDL-D are: é
o Functional objects - considered to have certain characteristics
called properties; and

o Data objects - considered to have certain characteristics called

attributes.

; Figure 6 shows that functional objects are related to data objects by an

"action'" which represents the '"use" concept. MEDL-D allows hierarchical

definitions for functional decomposition and data structuring. The capability
to specify discrete scheduling and timing information is contained within the
functional specification and is called the functional '"control."

3.2.3 MEDL-P, MEDL-X

MEDL-P, the 'procedure'' phase of the Multi-Level Expression Design

22 :

Characteristics

Properties

Hierarchy
ks Action Functi
E Relationships %cts
/
4
—t K
/
w ,/
§ Data K Function
> Resources ’ Resources
o ’
o . \ /
Residency /
Occupancy /
Requirement

Figure 6 Design Level Model

23

System and MEDL-X, the document gencraticn poase, nre still under development.

3.2.4 GAPS
The Graph Analysis Processing Svstoen (GArs) has heen referenced under
the Metric subsvstem of the MEDL-K software svstem. To reiterate, the EXTRAC!
process of the Metric subsystem converts selected requirements data base infor-
mation into a tree structure of graph nodes and links, which in turn is capable
of being analvzed by the CGAPS package.
-

As an overview, a relationship is defined for anv two requirements having
the same 'NATURE,' 'SUBJECT,' 'MOTIVATION,' or 'FUNCTION,' 'DATA' or 'RESOURCFE
RESOLUTION. The count of the number of identical relationships that exist
between two requirements becomes the link between the two requirements. The
link is represented in the GAPS matrix. GAPS has cormands to transform the
input graph matrix in the following wavs:

o Adjacency Matrix

o Distance Matrix

o Sequenced Matrix

Other program features include a clustering algorithm to determine parti-
tions of the sequenced-distance matrix and a command to evaluate a graph
partitioning by computine a strength and coupling measure. Another option
allows computation of a sct of statistics at anv point. ihese statisiics
include measures of node connectivity and disparitv as well as overall graph
values for centrality, radius and distance. Commands are also availablo to
print the current matrix «and SAVE/RESTORE the current matris,

GAPS provides a tool to graphically analvze requirements deseriptions.
Analysis includes an attempt to address the problems of retiability and

maintainability of the svstem by methods which present and emphasize graph

nodes of maximum potential improvement. CAPS can focus its analysis on indi-
vidual nodes or the total network structure.
3.4 Comprehensive Computer hotwork Modeling (CCNM)

Computer networks of both genceral-purpose and specialized configurationas

are, or are becoming, part of everv major electronic system being proposed or

developed. lhe requirement for these mu! - icomputer configurations is being
generated by both technical and economic pressures. The technical user is
requiring greater computing capability applied to broader areas of use with
higher reliabilitv. LEconomv requires that the user spend only what is neces-
sarv to solve the immediate preblem and only allow for expansion capability
that is modular and purchasable when needed. CCNM is an interactive network
modeling tool desizned to be receptive to iterative design and analvsis tech-
niques. Although implementation is not complete, CCONM represents one of the
tvpes of simulation tools considered necessarv for the svstem design process.
The philosophv used in assembling the CCNM svstem is to investigate,

detail and implement an experimental network design according to the level
structure in Iable 1. This level structure provides the capability to model

networks at a variety of levels and 1o increase specific details as more of

the characteristics are detined.

When the CONM svstem is operational as described, it will contii e to
evolve as long as new computer svstems, line tvpes, networking algorithms
(protocoss, flow control, routing) and analvsis and optimization algorithms
come abhout and are absorbed in the CONM data base. Tt is important to point
out that, as more networks are modeled, simulated and validated using the CONM
<wstemn, the data hase of nodes and links will grow rapidly until the most-

af ten-used processors and standard line tvpes are validated and prescerved

to be used by any future network possessing those elements. 1t is evident
that development time for the creation of network simulation models will

become drastically reduced, especially at the higher levels.

Table 1. Comprehensive Computer Network Model (CCNM) - Level Structure

Level

1. Node Linkage, Node ID, Line ID, Graphic 1/0: Use only standard model
available from model library. All variables assumed.

2. Modification of Standard Models: Node, multinode, lines, environment,
security, failure options.

3. Alternative Model Call Up: Node, multinode, lines, environment, sec-—
urity, failure actions, control algorithms.

4, Build Models: lLanguage selection, framework with fill in, syntax
linkage validator, libraryv access and deletion.

5. Abstract Models (FORTRAN and/or assembly language).

6. Macro Level: Macro encoding, code entrance, data entrance, trace and
timekeeping-enabled.

All Interactive or bhatch linkable to all levels.

NOTE: Each increasing level represents greater model detail.

3.4 Non-Automated Tools/Procedures

There are a number of procedures which also support TSD. These procedures
are not automated and serve primarilyv as documentation tcools, allowing the
svstem analyvst to express his thoughts and ideas in a form which allows him
and others to view and understand them.

Two of the procedures and notations which are notable address the func-

-

ey

- nell PR R

tional definition of the system. They are desi;nod tooaliow toe oo
express tunctional relationships in a graphic wav. The twe rfound o
useful arcv data flow diagrams as defined b Yourdon, Inc., 4. 07 anals 1,

designed by TRY.

3.4.1 Data Flow Diagrams

Data flow diagrams(]) (DFD) are used to represent a system pid?
allyv, thus reducing the amount of narrative needed. A DFD Is a netuvo.d
representation of a system. The system mav be automated, manual or miwco.
The DFD portravs the system in terms of its component picces with all |
faces among the components indicated. A DFD does not represent the flo.
control or the order of processing. Numbers used on the diagrams ave or
identification purposes only. Data flow diagrams are made up cf four ba.:
elements:

(1) Data flows, represented byv named vectors, are pipelines
through which packets of information of known composition tiow.
(2) Processes, represented by bubbles, are transformations of
incoming data flow(s) into outgoing data flow(s). Each
process bubble needs a descriptive name.
(3) Files, represented by two straight horizontal lines, are
temporary repositories of data and mav consist of tapes,
discs, card sets, index files or data bases.
(4) Data sources and sinks, represented bv boxes, are persons
or organizations lying outside the context of a svstem, that

are net originators or receivers of system data. A souvce

(1) Tom DeMarco, Structured Analysis and System Specification, New York:
Yourdon, 1978.

27

st s v g o
I) e
bog exists onlv to provide commentars ahosie Ul stem's
conanection o the outside world.
Data flow diagrams are expressed in levels, (i Tirst leve', called the

Context Diagram and shown in Figure 7, portrays an overall! picture of the
system with four subsvstems shown., These are labeied 1 through 4. “he sub-

svstems are broken down in separate DI'Ds and further described as shown in

Figure 8. ‘The components of the first subsvstem are labeled 1.0, 1.2, 1.3, ectc.

When a subsvstem has been decomposed to as simple a form as necessarv, it is
called a functional primitive.

There are many advantages to using levaled data flow diagrams. The
allow a top-down approach to analvsis. Bv reading the top few levels one can

get the big picture or one can bhegin with the abstract and g0 to the detailed

and narrow in on particular areas of interest. Fach page is a complete presenta-

tion of the area of work allocated to it. All diagrams can be restricted to
8% x 11 inch paper.

The second part of the svstem functional definition consists of the mini-
specifications which are concise descriptions of the bottom-level bubbles
(functional primitives). Fach mini-spec describes rules governing transforma-
tion of data flows arriving at the associated primitive inte data flows
leaving it. An example mini-spec is shown in Table 2.

To augment the data flow diagram, there is an entitv called the bata
Pictionary. This contains rigorous definitions of all data flow diaeran
elements such as data flows, components of data flows, files and processes.
These definitions relate all data elements through scquence, selection or

iteration. The Data Dictionary appears in Table 3.

- ———r—— ., Wy - s =

siskeuy ubisaq puy Ajigeray Waojay J ainbiy

]

ishieuy SIsleuy

A W.Ioj43d
|4

S1INsay-sisAjeuy

ejleq- uonnex3

PepasN uoniuyaq
-s|nsay - WA)SAS
S3AI311G 183 $3ARBAIQ 358} -10- 8dA(-159)
S3A}23.14
158l 158 o
EIVINPEIET] 1shieuy o
SaA112311Q ¢
bu1pl0d3y ejeq
S3A1D3J1Q J.Im SaANI8IIQ
:&J buipioday-ejeq buipaodzay-epeg -adk] cﬁwﬁw,mmm
mSwea ‘ 13PCW - WAYSAS |3pOW- WaysAS -158]
Z <
eleq uny il] 4
(3pCy
waysAS
eleQ- uoljniaxy
31emyos
suoledl)ddy
9JBM}J0S-21qepeo 31eM}J0S-31qepeo

o weubeig

WaISAS |apow 8 a4nbiy

3.1emyos
SUONRI|ddy 3.4eMY0g
% d|qepeo
, 3.JRM}J0S-3|qepeo aInpoid 34BM0S-153] J
E 91
|3pow
{ejuaw
ﬁ 19pOW .oﬂﬂ;mwww o UoN1d1 4353 (- |B)JUBWUOIIAUT- Wa)SAS)
-|BJUaWIUOIIAU] IR
13pow
BUOIUNS)
|apow 3onpoud uoNd1 4958 Q- [BUOIIUNS- W3} SAS
. -18A37- |RUOHOUNY €1
!
3) waysk
19pOW 131515 Saliepunog wajsis
i SuonoeU
oo e e Jo——e—] e
uofjewoju- Aiepunog aanpo.g 11 -320]g- Wa}SAS
S'1
sallepunog wa)sAsS
sweabei(-21b07- waysks
>
~
|3pow / o\
. [ELE SESTT)
|3POW- |9A9 -89 80npo.d Tg wc_smsg \
A -a0AL N\ 4

Table 2. System Modeling Mini-Spec

1.1 Subdivide Systew
IF model-information includes gate-level-model-needed
THEN
using system-block-diagram
partition system into logical functional blocks
define system-boundaries as internal-interfaces and
external-interfaces as functional-blocks
ELSE
system boundaries are external-interface and functional-block
ENDIF
1.2 Produce Gate-~Level Model
IF model-information is gate-level-model-needed then
FOR each functional-block in the system-boundaries do
FROM system~logic-diagrams produce block-gate-model
TRANSLATE block-gate-model into executable-emulation-code
ENDDO
ASSEMBLE all execution-emulation-code into gate-level-model
ENDIF
1.3 Produce Functional Model
For each functional-block in the system-boundaries do
From the system-functional-description produce block-functional-
model and interface-behavior-model
TRANSLATE block-functional-model to executable-simulation-code

PRODUCE code-generator~description from system-functional-

31

Db e ens A A

Table 2 ‘continued)

descrintion
ENDDO
Assemble all execulable-simulation-cede into functional-level-model
1.4 Define Model Specifics

IF model-type-needed includes gate-level-model

THEN
model-information = gate-level-model-needed and model-
subdivision-needed
ELSE
model-informatior = monolithic-model-needed
ENDIF

1.5 Produce Model Interconnection
For each of the system-boundaries
Define boundary-information
1.6 Produce Loadable Software
For each module of test~software do:
Using the code~generator-description as one input, translate the
test-software to machine-object-code and generate symbol-tables
ENDDO
Link all machine-object-code modules into loadable-software
1.7 Produce Environmental Model
From the system-environment-description produce environment-model-
description. Translate environment-model-description to

executable-environment-model

32

!
4
1

Table 3. Data Dictionary

() optional; [a 'b ‘e] alternacives;{ } iterations of; + and

analysis results = performance—measures' reliability-numbers‘ failure-effects-
results]
data-desired = number-of-samples~-necessary + type-data-necessary + type-of

failures-desired + {desired—failure-distribution} ‘ type-

data—necessary] + specific-system-portion-of~interest

data-recording-directives = data-to-be-gathered + [time—interval| timel

event] + output~-device + output-format

faults~to-be-inserted = location-of-fault + time-of-fault + duration-of-

fault + effect-of-fault

functional-level-model = functional-level-simulation-code + functional-level-

symbol~table’

gate-level-model = gate-type-tables + gate-interconnection-tables + gate~

symbol~table

loadable-software = {machine—object—code + symbol—table}

model-information = [gate—level—model—needed model-subdivision-needed

monolithic-model-~needed

model-type-needed = functional-model-needed + (gate-level-model-needed)

system-boundaries = functional-blocks + {internal—interfaces} + external-

interfaces

system-model = environmental-model + functional-level-model + (gate-level-

model) + boundary-information

test-directives - {faults-to—be—inserted} + environmental-model-directives

+ test-conduct-directives

test-system-definition = system-environmental-description + (system-logic-
diagrams) = system~functional-description + test-software +

system-block-diagram

33

Table 3 (continued)

type-data-necessaryv = (gate-performance) + (functional-element-performance) +

(environmental-model-performance) + (test-driving-factors)

type-results-needed = [performance—characteristicsl failure-effects-analvsis

reliability—number] + specific-system-portion-of-interest

3.4.2 N2 Charts
The N2 Chart provides a structured method for the definition of func-

tional interactions and interfaces. The chart itself is a graphical presenta-
tion of all of the functions within a system (subsystem, task, etc.), together
with the one-way interactions between each of these functions ordered in a
fixed coordinate matrix format. The chart gets its name from the fact that for
N functions there are N squared intersections or squares on the diagram, each
of which may contain a function or function interface. The number of possible
interfaces for the system is equal to N2 - N, where N is the number of func-
tions within the system. Since both functions and function interfaces occupy
a square of the diagram, the total number of squares graphically illustrated
is equal to the square of the number of functions involved.

Figure 9 illustrates a simplified NZ Chart which contains all system
functions (F1 through F&) on the diagonal axis and all system internal func-

tions. The square labeled F, - FA’ for example, represents the one-way inter-

1
face between function 1 (output) and function 4 (input). All function outputs
are defined in the squares which are in the horizontal row of the function,

while all function inputs are defined in the squares which are in the vertical

column of the function. External inputs and outputs are defined on the top

and bottom areas and the side areas respectively. The system illustrated in

R

R ol - S

B

Figure 9 has twe external anputs (Lo o Yoy oand two external outputs (from
tt
. . »)
Fl and ¥,Y. One of the primary purpess s of the N7 Chart is to indicate where
+
interactions and interfaces do not cexist. In Figure 9, the squares below and
to the right of function 3 are empty, indicating that there are no interfaces
between functions F3 and ¥,. The tablce at the bottom of the figure defines]
: 4

the basic rules for the N2 Chart.

Figure 10 illustrates the "arrow" and '"circle arrow" formats which pro-
vide a clearer visual presentation of interface direction and flow. These
format tvpes have been the most useful in the presentation of higher-level
design descriptions to a general audience.

N2 Charts are defined loosely enough to make them useful "for a number of
different applications. One of the primarv benefits in terms of functional
analysis is their graphic displav of interfaces (and hence some measure of
interfunctional coupling). This allows determining reasonable functional
grouping as illustrated in Figures 11 and 12.

The N2 Chart can also be a helpful tool in functionallyv grouping a given g
svstem into easily implementable units or program elements. Figure 12 provides
an example of the use of an NZ Chart to group detailed functions into effec-
tively implementable hardware and/or software elements. Figure 12A shows the
result of the detailed functional analysis activitv. The dotted lines around
the functional groupings of this figure show the initial function collection
operation. Figure 12B shows the final implementation functional allocation,
which follows the interface minimization grouping of the previous figure.

3.5 Other Tools

There are several other tools which support svstem design but have less

general widespread applicabilityv and are hence used on an ad hoc basis.

T R i

____1I_____|__._...1|
|

Fl"’FZ: Fl"'F3: Fl"FA:

! I

NP P

Function I i
|

|

S

Function
4

| |
F4..F1|F4_’F2|)
4

—_—_———— e e —

Output

Basic N2 Chart Rules

e All Functions Are On The Diagonal

o All Outputs Are Horizontal (Left Or Right)
®All Inputs Are Vertical (Up Or Down)

e All Non-Function Squares Define One-Way
Interfaces Between The Associated Functions

Figure 9 The N’ Chart

Line Arrow Format.

Circle Arrow Format

Figure 10 N2 Chart Arrow Formats z

i

Figure 11A Initial Function Organization

10O

OO0 0
Ol |O

Figure 11B Final Function Organization

38

s 10

Ol OO
.OFO.

O ‘OO Fa 1O

Figure 12A Original Function Diagram

Fa £A=£l And F
g~ by 4
e = Fs
FD:Fé' 7 Anng
b O
M

Figure 128 Final Implementation Diagram

39

Examples of these inolude ssimulation to o0 wer oo i ie trade study issues,
analvtical vtuldies and the vie o emulation Froacation is a pecial case which
bears more detailed cvplasations concoreing s lach of wide aponlicability,

The kev bencfit of emnlation is that it provides a verv detailed model
of a plece of hardvare with a much smaller amount of overhead than a comparable
simulation. This model hence tends to execute faster than a comparable simu-
lation but still retains the flexibility (modifiability) of software. For
many svstems, however, the issues don't relate to whether the hardware will do

the job or not, thev relate more to how the various picces should be connected.

There are the network issues addressed by CONM, Unless very stringent real
time considerations are involved or serious form, fit and function constraints
are imposed, the detailed hardware/sof tware tradeoifs which emulation can pro-
vide are not necessarv, Use of emulation also requires very detailed definition
of the hardware and softwvare ifovolved (for software, it is the exact code).
This amount of detail i< often not available until late in the design cvele
when the hardware/sortware trade studvy issues bave alreadv been resolved.
After acceptine that emalation is not universally applicable to svstem
desiun, it is proper to consider when emulation is an absolute necessitv in
svstem desion. A< mentioned hetore, bhardvare!/software tradeoffs for specific
subsets o1 A real time svstem require the flexibility of emulation to provide
quantitative answers to pertormance aud timing questions. When issues such as
weleht and power constraints are important, crnulation will again provide a
performance/capability tradeoff abilitv. Tor actual developmert, emulation
is perhaps the only solution when the machine for wiiich development is being
carried out is not available or cannot support the peripherals and svstem

software necessarvy on its own. The major point to be made is that svstems

that contain this kind of coustraint are only a small part of the total world
of svstems. In short, emulation is not alwavs useful, but when it is needed,
it iIs often the onlv viable solution.

There are a number of software tools supporting these other methods.

For example, in the area of simulation, there are a number of supported simu-
lation languages such as PSS, SIMSCRIPT and SIMULA as well as the standard
languages like FORTRAN, PL/1 and ALGOL which are also usable for developing
simulation. The specifics of each simulation, the choice of language and
support machine, depend on the problem being addressed and are very much
application specific.

For emulation, the support tools are not so prolific. Microcode develop-
ment tools are emulation support machine dependant and vary from manufacturer
to manufacturer. For translating the target software, there are several meta
assemblers available. The most used meta assembler at Martin Marietta is
the one produced bv MacDonnell Douglas for NASA. This meta assembler allows
the user to describe the instruction set and formats for the target machine
and this description causes the assembler to recognize and translate the
assembly language of the described machine.

Since the other tools are not universally applicable to system develop-

ment, detailed descriptions of them are not included.

41

— '.‘“--——-—...‘ | e -

4.0 TSDOUSAGE

.1 Introduction

wirile the previovs soction conconrrated on o carrent tocols and procedare.
[t is necessary to emphas=ize tha! the most important part of any nethodotess

is the pnilosopbv and concepts beidnd it and not necessarily the tools sup-

porting the methodologyv. The toels are important in relation to how well

support the philosophv and how much capabilitv thev ailow. Tools which »v
their nature restrict the desiuner or jorce him in a directicn he doesn':

want to take are not onlv undesirable but potentiallv dangerous tco the sucdess
of the design process. Thus, tool selection and use must be accomplisied in

a judicious manner totallv within the context of the underlving philesophy

of the design methodologv being pursued. With that caveat, this section
addresses a svstem design scenario, identifyving the tools which could be usad
and the peints in the process when those tools come into pla.. Figure 2,
presented earlier, will provide tie {ocus for this discussion.

4.2

-+ .

Propesal

The activities shown on Figure 2 wvhich are prior to the autherization to
Praceed (ATP) represent the initial involvement with the svstem being designed.
This includes the customer's initial development of the svstem concepts and
preparation of the procurement package which begins the process. After

receipt of the procurement package, the first major involvement in the process
starts with the proposal ~reparation in response to the Request for Proposal
(R¥P).,

Proposal preparation includes the preliminarv analvsis of the functions

the svstem Is to perform. Due to the very short response times on RFPs,

tiiis analysis cannot be to the detail that later analvses will be. Howuever,

within the context of out linine g ovedindinars G i00 0 0 of wirt Uiie vstem

should Took Tike, the pronosal acesivie o copresents b i sosten devetopment
cading with an initia! svstem or A-level specification with a preliminary def-
inition of the major hardeare and seoftware components proposed. Since the

methodology attempts to delav premature decisions concerning the implementa-
tion of the system, this is clearly not a logical time to define the hardware
and software components. However, the real world situation forces this pre-
maturitv due to the currcnt policies concerning svstem procurement, particu-
larly the proposal evaluation process and the e¢mphasis it places on showing
understanding through the proposing of a solution. The real world thus con-
strains the methodologv. The major saving grace of the system is that later
stages of the development will revisit the decisions made in the proposal
preparation and will either validate those decisions or revise them approp-
riately.
The tcols most useful for proposal preparation are the requirements
analvsis tools (e.y., MiDL-R), the non-automated tools which aid in the
functional decomposition (e.g., Data Flow Diagrams, Nz Charts) and ad hoc
simulation to aid trade studies. The requirements analysis tools allow the
manipulation, grouping and categorization of requirements. This is represented
by the separation of requirements into functional and other categories so :
that functional decomposition can focus on what the system is to do without
having to consider inappropriate constraints. Through the use of data flow ;
diagrams and/or Nz charts, the functional requirements are further categorized
into major subfunctions and then into more detail until primitive functions
are described. Primitive, as used in this context, is a relative term. The !

extent to which the subdivision process proceeds is dependent on two primarv

- T v
R S -8 R TR O P

judgrient of the svstem analvst that the primicive
] \ 3

factors. fthe first is the
functions he has developed meet the intended ¢ual of Tunctional decomposition,

understandability and realizability, he second factoer determining the decompo-

sition stopping point is time. Time is often a factor in vroposal effores and

limits the degree of iteration possible.
Once the system has been defined functionally, alternative methods must

be developed for performing those functions. At this point the requirements

tool becomes important again. The requirements are again categorized, but

this time the categorization is by function. This catcegorization includes

not only the functional requirements (which after all caused the functions to

be defined) but also the performance requirements and other constraints. This

provides a bound on the implementation possibilities of the system. The

result of the categorization is a function by function performance definition.
The next step is to determine the inherent parallelism between the

functions. This task includes defining what steps must be performed before

what other steps, and which steps are independent and may go on in parallel.

2 .
If N charts were used in the decomposition process, these same charts may be

reoriented to show time sequencing. Data flow diagrams, by their nature,

assume a parallel system and are not oriented to showing time specifically. i

Thus, they are not useful for this step. Another manual tool which might aid

this process is some variation on Petri Nets.
Once the basic functions of the system are defined, characterized in terms

of performance and placed within the overall sequencing pattern of the svstem,

In defining the implemen-

——— e e ear

implementation of the functions can be considered.
tation, the possibility of grouping sequential functions or of multiprogramming

parallel functions, of distributing the functions and of providing a single

44

processor to cover all functions must be traded off against the other gen-

eral requirements such as cost, reliability, maintainabilitv, power consump-
tion, size, weight, etc. For these trade studies, ad hoc simulations, paper
and computer based analvses (for reliability, for example) and enginecering
judgment will develop one potential, viable candidate solution which will
then be documented in the proposal.

The requirements, the functional decomposition and allocation of require-
ments to those functions and the candidate solution will make up the proposal
and the proposed system level or A-level specification.

4.3 Functional Baseline

After contract award and the Authorization to Proceed, the prinmary
emphasis is on developing a system functional baseline or a logical moadel of
what the system is to do. The effort expended in the proposal preparation
will serve to provide a starting point for this process. However, during
this phase of the contract, more time and effort will go into developing a
validated functional baseline. The useful tools for this process, which
represents the analysis phase described in Section 2, are the same tools
which were useful in the proposal development stage.

The first step, automation of requirements or the entering of the require-
ments into a data base, has already been done in the proposal effort. The
requirement changes, additions and deletions which alwavs develop are added
in at this point. 1In addition, the requirement derivation process, under-
standing and documenting the requirement level consequences and implications
of the imposed requirements, has begun in earnest. The requirements set is

continually reviewed and analyzed, often using automated metric tools, for

completeness and consistency. Gaps which are not fillable bv derived require-

45

ments are filled by assumed requirements which must be noted and coordinated

with the customer. This requirements analvsis process continues through the
development effort and provides a viable mechanism for traceability and study
of ramifications of requirement changes. Requirements tools, such as MEDL-R,
will aid immensely in this effort.

The emphasis put on requirements at this stage is not surprising since
the methodology is intended to develop svstem solutions based on the svstem
requirements. It is very important to ensure requirement traceability to
accommodate requirement changes later in the cycle.

Concurrent with the general requirement analysis described above, the
functional decomposition process described briefly in the proposal section
is accomplished. This process deals exclusively with the functional svstem
requirements, those imposed and derived and those developed as a result of
the mission analvsis. Mission analvsis provides details concerning the use
of the system in an operational environment. The operations concept should
be a part of the imposed requirements given in the statement of work or svstem
specification but there is a possibility that the anzlvsis of the svstem
mission will result in some new functional and performance requirements.

This analysis also serves to validate the imposed and derived requirements
in terms of necessity to accomplish the svstem's operational purpose. This
could be thought of as assigning a kind of priority to requirements, giving
those that don't contribute to mission accomplishment a lower priority than
those that do contribute.

The functional analvsis consists of the functional decomposition process

described in the proposal section. This process is aided bv manual techni-

gl

ques such as data flow diagrams or N7 charts. Since iteration is now a much

R

D s A

T T e T

more viable possibilice, effort {0 quariitving the go it ol

wvill prove benctficial, “hole such as GAPS (descerihod Tris 'y T Setd o o

whiclh aid in the quantification are very helpful. 0 teyim Cf e s Lo
result of functional decomposition, concepts such as strengin ond counlinvg i
will allow a number to be assigned to a given partitioning. :
l
Strength, or cohesion as it is often called, represencs the 1ntsalunct o !
|
interfaces, how nuct the varioue portions of a function beloay rouetir. rrow :
;
an idealized point of view, the best partitioning resnlts in consistenl “unc- i
L
tions whose components are grouped together because ol functicna! (Cactner tion 1
i
logical, temporal or coincidental) reasons., That is=, cach of he oponca i
{
pivces contributes to the one function rather than having been pronped in
:
“functional" block because thev do the same sort of thing itut sTiuvitly i
i
differently (lowical) or thev do a set of things in the same tiue period X

(temporal, initialization is a good example) or thev are just wvouped torv i
apparent reason (coincidental). Strength mav be somewhat difficalt o
quantifv but a good first cut is to assizn a value which is funverse) propo -
tioned to the number of different things a given functional o0 does,
Coupling, or the interfunctional interfaces, is morc vasilv guaant it icd,
Couplaag represents the complexity or number of intertaces witn other toace
tions., The desire is to minimize coupling so that ecach faaccice ooy s

independent. This corresponds to the software concept of lndcraatites hidne

To analvze the

'soodness' of a given partioning aainst ot pictionine.
both the strength and coupling must be calculated. Sicce the obyect is o

maximize strength and minimize the coupling, the ratio or strenorh/conpiing

sives a quantitative indication of how good a functi nal partitionins ., fhe
|
better partitioning will have a higher number than a poorer one. Sltarng ive
47

partitionings are proposed until the analyst is confortable with one and the

assessment process indicates that it i+ as pood or better than the others
proposed.

Once a functional decomposition is arrived at, the performance requirements
are assigned to each function. The functional requirements are also assigned
to the functions but this happens as the decomposition proceeds since the
functional requirements dictate the decomposition components. The result of
this process, which is accomplished using a requirements tool, is the system
functional baseline. The functional baseline describes the basic functions of
the system, the interfaces between functions and the constraints in terms of
performance for each function. One additional step is accomplished prior to
the System Requirements Review, which marks the end of the Analvsis Phase.
This step is the allocation of the various functions to hardware, software
and human elements. As mentioned before, this allocation is project-dependent
but it serves to bound the extent of autumation within the svstem. This allo-
cation is aided by guidelines and trade studies to provide the most logical
breakdown.

4.4 Allocated Baseline

The allocated baseline represents the top-level svstem definition.

Development of the allocated baseline is driven by the functional baseline,
including the performance constraints. At this stage, potential solutions

are proposed and evaluated. It is significant that the consideration of
physical solutions is not undertaken until after the Svstem Requirements Review
(SRR) during which the system functional baseline is presented and agreement

by both sides is sought on the total system requirements. Development of the

allocated baseline and the subsystem design which follows it represent the

synthesis phase of the development.

The definition of candidate solutions to the functional baseline is
currently highly dependent on the experience and background of the system
designer. There are no tools which will take the functional model, constrained
by the performance requirements, and magically produce the proper mix of hard-
ware, software and human elements to accomplish those functions. However,
there are a number of tools which will aid in evaluating proposed candidates
to determine their fitness for the problem. This section will therefore con-
centrate on the evaluation process rather than the system solution proposal
process.

There are several ways of guiding the development of potential solutions.
The first are the imposed system constraints. For example, requirements for
reliability, survivability, availability, fault tolerance, ruggedization, size,
power consumption, weight, etc., will serve to bound the potential solutions.
The second aid to the system designer is the determination of parallelism in
the problem. This determination is made by examining the system functions
and determining the sequencing and order independence of each of the functions.
N2 charts are adaptable enough to aid this process and show the order of exe-
cution of functions. Data flow diagrams, which assume parallelism of the func-
tions and do not provide a mechanism for describing sequencing or conirol, are
not useful for this task. Variations on Petri nets, with their strong empha-
sis on sequencing, are another possible tool to aid this analysis.

Regardless of the specific tools used to bound the solution space, the
next step is to propose and evaluate potential solutions. The evaluation
process is aided in a number of ways by manual and automated tools. For man-

ual evaluation, sizing and timing studies, which seek to characterize the

49

functions in terms of computer resource requirements, will provide indications
concerning which functions may be performed in a single processor, for example.
Once pote tial candidates are defined, simulation of the caendidates will pro-
vide quantitative data on the performance of the candidates. There are several
approaches to this simulation. These include ad hoc simulations, built on a
case-by-case basis, and use of general purpose structures such as the CCNM tool
previously described.

Other tradeoffs will affect the proposed solution These include consid- J
erations of life cycle cost, risk and logistic support. For components which
are critical, or for which there is some concern relating to performance, the
use of emulation in conjunction with simulation will provide a detailed exam-
ination of capability. For emulation, if the emulatio; is intended to repre- #
sent a processor, the software driving the emulation must be developed.

Once all the factors are taken into consideration and the evaluations
have been done, one candidate system will emerge as the best of those consid-
ered. After assigning the functions (and hence the requirements) to the
component pieces of proposed solution, the result is the allocated baseline.
The assignment of the functions to components extends the requirement trace-
ability of the methodology so that one mav go from the basic requirement to
the actual implementation due to that requirement.

The allocated baseline is reviewed and agreed to at the Svstem Design
Review (SDR). Following the SDR, further definition is done on the various
subsystems. This definition includes the specification of test requirements
and further detailing of the subsystems. The results of this process

are reviewed at the Preliminary Design Review (PDR) which ends the svnthesis ‘

phase of the development. From here, the svstem does into the implementation

phase which is not specifically covered in this document about TSD.

50

. L o i . L
.) ,,:l,_. oy “m"A\'-‘“‘ FLAT.

5.0 GPS USE OF TSD

! 5.1 1Introduction

The Navstar Global Positioning Svstem (GPS) is a space-based radio navi-
gation system that provides precise time and three-dimensional position and
velocity to GPS users. The GPS will consist of three major segments: the
Space Segment, the User Segment and the Control Segment. TSD methodology was
applied to the system definition of the operational Control Segment of GPS.
GPS represented an ideal test case since the solution was not predefined by
the customer and true top-down design could be done.

This discussion is not intended to be a full explanation of the GPS svstem
or even a top-level discussion of GPS itself. This discussion is instead
intended to describe the use of the TSD methodology and the lessons learned
and to provide suggestions for the future. Thus there will be very few
details about GPS. The aspects of what was done in terms of approach will
i provide the major focus. The only aspect of GPS which is relevant 1is the
fact that it represents a real world case, it 1s a large system and it con-
tains real time and command and control aspects.

5.2 Approach

TSD methodology was used for the Stage 1 contract for GPS which resulted

in the B-level specification of the GPS operational control segment. Since
t development to B-level specifications is the primary focus of TSD, the experi-
l ences encountered in applying TSD to this contract are directly applicable to
the methodology development.
Due to the fact that GPS was a real contract and not just the experimental
l application of a methodology to a "toy" problem, the effort was not able to

take advantage of any of the tools which were in the development stage (i.e.,

51

—— e

pl‘c[‘&.’l(‘:lsv !)I‘ntt‘t‘.’p\‘s). MnRL-Roand CONM both fit o into this categpory at the

J time the OPS project was beingy done, althougl MEDL-KR has now reached the
' status= of a4 roivesed tool Lith vorsion and chanye control. However, the key
"
concepts of TSD were assiduously applicd to the whole development. The primary

steps of the methodology were done in the proper order. Particular attention

was paid to requirements traceability, functional decomposition and resource

allocation. Requirements traceability was enforced by manual methods. Func-
?

tional decomposition was aided by using N7 Charts and preliminary system

definition was aided by extensive use of simulation.

The requirements analvsis phase had four major objectives:

1. Validate the imposed minimum requirements.
1

-

2. Determine cost/benefit of the customer identified enhancements.

3. Interpret the impcsed growth requirements.

4. Derive lower level detailed requirements.

The validation of the imposed minimum requirements focused on assuring
that the requirements satisfied the criteria of being unambiguous, necessary
and testable. The customer identified enhancements were prioritized based on
mission criticality and were incorporated into the baseline as fixed acquisi-
tion cost permitted. The growth requirements were interpreted to define
specific hardware and software design requirements. 7The net result of the
requirements analysis included a requirements baseline including all imposed
minimum and growth requirements, plus 75% of the desired enhancements.

Functional decomposition was undertaken .n several steps. The opera-
tional control segment was first divided up into four major components: the
ground antenna (GA), the monitor stations (MS), the master control station

(MCS), and communications. Although this division is primarily geographical

52

(there will be several monitor stations and ervooa onlenns SLtehooare e eraphs

ically separated from the single master control racion), the Tonctboa, Lers roued
at each point are in fa t Jiffercenl ane toe creak own iw thie o= funcilonal,

The total vequirements were then allocated to cach rajor subsustem to allow

the functional decomposition te proceed within each subsvetorn pendent]
The system was further decomposed withiin ecach subsvatem and then the

interfaces between these level | functions were analvzed and uraphicatiy

2 2 }
illustrated using an N” Chart. The N~ Chart proved to be doubl. usciul due

2

to the fact that the program included threc major subcontvactors and the N
Chart was also able to show the interfaces betuween companies.)

The level 1 functions became the major configuration items (Cls) and
computer program configuration items (CPCTs) in the B-level specification.

To facilitate the resource definition process, these major functions were
decomposed one level further. Requirements on a per function bhasis were

then alleocated to the various components (hardware, software, human elements)
and served to provide a functional baseline, documented in an A-level speci-
fication.

Development of a svstem architecture to support the functiconal decompo-
sition used a number of methods to define the major components. Analvsis of
activity threads, time lines and coupling lead to sizing and timing constraints.
Consideration of various modes of processing such as real time, near real time
and batch processing were evaluated for each function. Other criteria such as

growth and life cycle cost were applied to candidate architecture to determine

configuration sensitivities. Fxtensive design validation, using benchmarking
and vendor written software, in parallel with simulation and modeling, proved

the credibility of the ultimate architecture.

53

Following the analvsis of requirements and detinition of the Lasic o ster,
B-level specitications were produced. Efforts were made to ifisure traceability
of the requirenents to the B-level specifications. fhe final B-level speciti-
cation was one 1 the primary deliverable ctems under the contract,

5.3 Results

Iiie overall results attained on the GPS contract were outstanding. "hat
is not to sav that therce were no preblems durine the program, fire methodology,
while aiding in some cases, hindered progress in others. Tt also pointed out
some failings in vovernment svstem development regulations which will be cov-
ered later. In terms oY a test case for methodology assessment, €78 provided
a wealth of experience which could be obtained no other wav.

The requirements analvsis effort suffered the most in the asscessment.,
One of the most difficult aspects of requirements analvsis was the etfort to
provide traceabilitv manuallv. This effort was successful for the A-level
specirication and there is a demonstrable traceability from specific require-
ment§ to A-level specification paragrapbs. Traceability to the B-lovel was
somewhat less successful., The major problem is the fact that B-level speci-
fications are more detailed and hence the number of paragranbts is much groeater
than for the A-level specifications. In alddition, insuring requirement trace-
ability doesn't seem to provide any positive benefit tfrom the point of view
of the person tasked to do the job., This barrier requires an education process
and eftective personal discipline for the lower-level designers. The eftort
wounld also have breen greatlv aided by the use of an automated tool.

The second aspect of requirements analysis that didn't follow the ideal
pattern was the requirements allocation, the assipgning of requirements (and

functions’ to hardware, software and human elements. Theoretically, this

allocation provides the basis Vor comnosp s Coe hos e e :

In practice, it Jdidn't work out that

allocation proce= o aend o faree anowst o docrmenrat for resid el R
w mentation was then nover e ter anvtiiine tartior. oopriioor oo
the ef7ort wvas tbe cduacation wad enlivatenmont o the cers cunel o b o e
that owa= never toe fntended oo aeconatt o vod o cleer e i i
the results of the estfert are to e sed woonld tave alleviates v e 0T
For the svstem architecture derioftviom, the D850 anproge e o Lo =
el The simnlation aod modeiine validation orocided Tor o a ionl ore il
desiomn, Cheoone cailln i this rea o was U por T ade ity vsa T
man-machine fntertace Issues,

- oyt SRS
Production oo orhe

chenoconcernins specitloaticon trees and Ui N e
| (Contfiuration St Practices oy Sustons, B at, N
computer Proaram o) oand MTL-ST0=tv ossec i Sicat fon Practices). S v
b
’ J
Coneensds was thiat ~tandards e not orovide surdicient flexioibion :
4
adecuatels desoribo aoveornntor-asod s oaten, Lere needs oo he o=t
spocirieation chich Pridees Uhe cap Dotween the A=lovel speciticarioos and Ui L
S0 cpocitication, othor socsested anpraach was te made the B=Noavo ol ioas
Con s ser et U e Held ol Toat ton,
S Tonctusions
T terms of use of TSD setiodcelory s S proavided some o vers S N
. i
conelusions, 1
I The requivements analvsis ouasr e atded beosonme sort o7 autemated

tool. The front end cducation costs i1l He rere

in 1ater stases by the fact that the regquirenments= are autemated,

e 3
! ‘
i

| ;

and

N

- - . -

- TV RO B H T R N J ' ‘ ' .
Tor U [QOIS S A AN P ' v

atiosn oant oo ' t. T,

3. There s oot ot ronell=cotined caoattoar NS T
ticaal decompositioe with merio v oninee poeoulrement s
the function Lo Lhe re oarces neces=ary o Pl
Tunctionss o The prelisminar des o orfore 1 st
matter of the cxpericoce and exnertisce of the =

rescarvh,
4. The people on g

prosran

Jieve

to applvy it and

cone as tiie methodoleoay

Overall, the top=down, strua

enabrled producticn of a vigh

CoodoToey that necds te b

using TS5 omust understand

il oaidd

fe apnlicd too move prodoge

ctured aporeacs henerigted

detondainle desion,

e,

their o

1n

i,

e

e

[SETEEEN LA RN

allocatedl o

Ll
Yool oa

Dersonne .,

Toot v

o B .

KITOW oy
< osho

GPS proiect

6.0 CONCLUSTONS

There arve man s descristion:s 0 whnt -aon'd be done daviae the svstem

design process. Infortunatels) those osoriptions comvecat s gte oil v hat ot her
than how and as a resalt are only asetul in providin: o bBasis for g nethodoiogy.,
A methodoloyy must contain mucn more thae just philosophy. A methodoiogy must

contain guidelines, procedures and prictices; all of whiclh are supported by

E i
either manual or automated tools, Tt must thus concentrate on the how of 1
'
!
syvstem design to be useful gt all., |
f
In light of this requirenent on methodolovies, the TSD methodology ;
i
described in this repert is rruls emibrvonic. Much is still left up to the
* 1
capabilities of the svstem designer. Perbaps the higgest gap is the step l
from understanding what the svstem must do (functional baseline) to the design
which will implement these functions. The process does not flow logically j
and there are no tools currently available to support this step. |
’.
Another proeblem with the current methodology has to do with interoper-
abilityv of tools. The tools are not built around common data bases and ther:
is no capability to automatically move from one to the next. fhere should be
i no surprise that this is the case due to the fact that currently existing

tools have been developed independently. Major work remains to he done in
! consolidating and coordinating various tools.

Application of the methodolopy has defined other shortcomings, specifically

in the tools. MEDL-R has some capabilities which are not beneficial for

| 1
: .
system desivn and lacks seme which are necessarv. MEDL-D is currently heavilvy
} ;

: . . . " ,
‘ oriented toward software desivn, not svstem design. rhe thrust of these tocotls
is being redirected to make them more respousive, A
Data flow diagrams don't provide the capability te show control sequence
. 7
y
Yi

S e thds bimits their o arefnlness fo oexpressing the dnberent par-

)
Clcidar b the twnetions, 7 charts, oo the other hand, cin be used to show
thos o cerallelive, tut they have the problem of becoming very large as the
Aoy o7 fumetiens increases. Their size thus limits tne willingness of
the svatom de-ignes to change them as the design progresses. Automation migit
alicvivte tihls failing somewhat.

stmulation sutfers from the cost of developing and executing it. Devel-
opnent eost is ailded by generalized support capabilities such as CCNM. Emula-
tion requires fairiv detailed definition of the portion being emulated and is
tiws esi useful in the more detailed design process.

Repardless of the failings of current tools, the definition of a viable
approach to svstem design has provided a baseline with which to evaluate
potential tuols and techniques. Further work in the tocl area, specifically
concentrating on automated tools, is continuing. Martin Marietta is convinced
the svstem design process is capable of being made and must be made more rig-

orous, traccable and amenable to verification.

% U.S, GOVERNMENT PRINTING OFFICE: 1981-714-025/83

MISSION
of

Rome Awr Development Center

RANC peans and executes wescaxnch, development, test and
sefected acquds{tion vrograms (n suppernt o4 Command, Contrced
Commun(cations and Tntetddaence (C31) activities. Technical
and engdnecting Supnert w(thin areas c¢f technical cempetence
5 proevdded te ESD Pregram 0444ces (POs) and cthew ESD
clements, The prdncdpal technical m{ssdon areas ate
communccaticns, etectromagnet(c qudidance and centrel, sut-
vectlance ¢4 ground and aesespace cbiects, (nteddd{gence data
cettection and fiandddng, OuAcamation system technelegy,
conesplicnde prepagatoon, Scddd state sclences, mictowavy
phusics and clectronde weddabiddty, malntainab{&ity and
cempatb{i{tu,

——— T —————

v Nl

